Inadequate Infrastructure

Many major American cities have no passenger rail service at all. Where service exists, travelers face overcrowded trains, stations, and parking facilities. Trains wait to pull into stations. Switching centers are chokepoints. In many parts of the network, bi-directional lines run on single tracks, and the turn-out sidings are too short to accommodate the long freight trains. Scheduling the mix of faster moving passenger trains and longer, slower freight is problematic. Of Amtrak’s delays in April 2008, 79% were due to host railroad (freight or commuter) delays. These delays are in large part a result of operational bottlenecks that can only be addressed by significant investments in new track and signal infrastructure designed to address both freight and passenger capacity needs. At least 50% of the 76,000 bridges owned by the freight railroads were built before 1920, and catastrophic failures have been occurring on railroad bridges at the rate of two a year. Rusting track and sidings, wooden cross-ties, antiquated signaling and traffic control systems, and congested switching yards all contribute to costly, inefficient transport of people and goods.

The Passenger Rail Working Group Report showed $66.3 billion in needs for infrastructure and equipment between now and 2015. Of this amount, $50.2 billion was for infrastructure. A dedicated 80–20 federal–state matching program and 30-year tax credit bonds will enable the states to provide reliable passenger rail service—the most energy- and space-efficient mode of travel for intercity corridors.

1. "Annual Amtrak Ridership Sets All-Time Record; Fifth Straight Year of Increases; Riderhip Tops 25.8 Million; S1.5 Billion in Passenger Revenue," October 23, 2007 (www.amtrak.com; News & Media, News Releases, Archived News Releases).
11. See note 6, p. E-1.
The Nation’s rail system is at a critical pass. Demand for passenger and freight service is climbing rapidly, driven by escalating fuel costs, highway congestion, and overtaxed airways. The country’s rail facilities are not prepared to meet this increased demand.

Expanding Transportation Needs

Americans are taking trains at record rates. Amtrak ridership reached an all-time annual high of 25.8 million passengers in FY 2007, a fifth consecutive year of rising demand.1 The trend continues, with FY 2008 monthly ridership running as much as 12% higher than a year earlier.2

Increases are most dramatic on state-sponsored intercity systems. Ridership has grown 43% since 2001 on California’s three upgraded intercity rail lines (while population increased by 11% and highway travel increased by 8%). North Carolina has seen an average increase of more than 20% over the last year, with line increases as high as 41%. In Illinois, doubling passenger rail investment has yielded a 40% ridership increase.3

Also facing record demand, the freight rail lines that host about 70% of passenger rail miles in the United States are chronically congested. Traffic exceeds the capacity of antiquated facilities, creating costly slowdowns that cascade throughout the system.4 Freight volumes, in terms of ton-miles per route-mile, increased by 105% between 1990 and 2005, and the U.S. Department of Transportation projects a tonnage increase of 88% by 2035.5 The state of the rail network is critical for the Nation’s economic health, homeland security, and military mobilization.

Aging Equipment

Equipment shortages and breakdowns cause delays, congested cars, and increased operating costs. Locomotive shortages result in slower trains and shortened trains, reducing capacity. The implementation of new passenger rail services by states has been hamstrung because of Amtrak equipment shortages. Essential equipment is deteriorating: 10% of the maintenance vehicles, switching systems, power generation and distribution facilities, and other capital equipment are beyond their expected service lives.8

In FY 2008, even as ridership climbed, 17% of Amtrak’s locomotives and 15% of its passenger fleet were out of service.9 The rail coaches (useful life of 40–50 years) are 23 years old on average (range: 6–59 years), and locomotives (useful life of 25–30 years) are 16 years old on average (range: 6–30 years). Amtrak projects the cost to replace its fleet over the next 15 years at more than $6.5 billion.10 Actions to address the critical shortage of intercity passenger rail equipment must begin now. The lead time for purchasing rolling stock is 5–10 years.

“Providing adequate track capacity to address expanding passenger and freight needs is among the largest challenges in creating the future passenger rail network.”

—Passenger Rail Working Group, National Surface Transportation Policy and Revenue Study Commission, December 2007

Poor Performance

Inadequate infrastructure and equipment are affecting Amtrak’s on-time performance. As of April 2008, Amtrak’s on-time performance was 73% system-wide but with wide variations from route to route: as low as 7% and 12% on the least reliable long-distance lines and 3% and 12% on the slowest short-distance runs. The average per-trip delay time for a long-distance train ranges from 1.5 to 9.5 hours.6 Improving timeliness and reliability would increase Amtrak’s ridership and revenues significantly.7 This improvement is possible only with investment in equipment and infrastructure.